top of page
Search
  • darren4dunkley

Covid Related Peer-reviewed and Scientific Papers

1. Zuckerman DM. Emergency Use Authorizations (EUAs) Versus FDA Approval: Implications for COVID-19 and Public Health. Am J Public Health [Internet]. 2021 Jun;111(6):1065–9. Available from: http://dx.doi.org/10.2105/AJPH.2021.306273


2. Food and Drug Administration. Development and Licensure of Vaccines to Prevent COVID[1]19: Guidance for Industry [Internet]. 2020 [cited 2020 Oct 6]. Available from:


3. Food and Drug Administration. FDA Briefing Document. Janssen Ad26.COV2.S Vaccine for the Prevention of COVID-19 [Internet]. 2021 [cited 2021 May 28]. Available from: https://www.fda.gov/media/146217/download


4. CDC. Risk for COVID-19 infection, hospitalization, and death by age group [Internet]. 2021 [cited 2021 May 28]. Available from: https://www.cdc.gov/coronavirus/2019-ncov/covid[1]data/investigations-discovery/hospitalization-death-by-age.html


5. CDC. COVID-19 Pandemic Planning Scenarios [Internet]. 2021 [cited 2021 May 28]. Available from: https://www.cdc.gov/coronavirus/2019-ncov/hcp/planning-scenarios.html


6. CDC. Estimated disease burden of COVID-19 [Internet]. 2021 [cited 2021 May 28]. Available from: https://www.cdc.gov/coronavirus/2019-ncov/cases-updates/burden.html


7. Dan JM, Mateus J, Kato Y, Hastie KM, Yu ED, Faliti CE, et al. Immunological memory to SARS-CoV[1]2 assessed for up to 8 months after infection. Science [Internet]. 2021 Feb 5;371(6529). Availablefrom: http://dx.doi.org/10.1126/science.abf4063


8. Turner JS, Kim W, Kalaidina E, Goss CW, Rauseo AM, Schmitz AJ, et al. SARS-CoV-2 infection induces long-lived bone marrow plasma cells in humans. Nature [Internet]. 2021 May 24; Available from: http://dx.doi.org/10.1038/s41586-021-03647-4


9. Breton G, Mendoza P, Hagglof T, Oliveira TY, Schaefer-Babajew D, Gaebler C, et al.

Persistent Cellular Immunity to SARS-CoV-2 Infection. bioRxiv [Internet]. 2020 Dec 9;


10. Hall VJ, Foulkes S, Charlett A, Atti A, Monk EJM, Simmons R, et al. SARS-CoV-2 infection rates of antibody-positive compared with antibody-negative health-care workers in England: a large, multicentre, prospective cohort study (SIREN). Lancet [Internet]. 2021 Apr 17;397(10283):1459–69. Available from: http://dx.doi.org/10.1016/S0140-6736(21)00675-9


11. Krammer F, Srivastava K, Simon V, the PARIS team. Robust spike antibody responses and increased reactogenicity in seropositive individuals after a single dose of SARS-CoV-2 mRNA vaccine [Internet]. bioRxiv. medRxiv; 2021. Available from:


12. Samanovic MI, Cornelius AR, Wilson JP, Karmacharya T, Gray-Gaillard SL, Allen JR, et al. Poor antigen-specific responses to the second BNT162b2 mRNA vaccine dose in SARS-CoV-2-experienced individuals. medRxiv [Internet]. 2021 Feb 9; Available from: http://dx.doi.org/10.1101/2021.02.07.21251311


13. Camara C, Lozano-Ojalvo D, Lopez-Granados E, Paz-Artal E, Pion M, Correa-Rocha R, et al. Differential effects of the second SARS-CoV-2 mRNA vaccine dose on T cell immunity in naïve and COVID-19 recoverez individuals [Internet]. bioRxiv. 2021 [cited 2021 May 28]. p. 2021.03.22.436441. Available from:


14. Levi R, Azzolini E, Pozzi C, Ubaldi L, Lagioia M, Mantovani A, et al. A cautionary note on recall vaccination in ex-COVID-19 subjects [Internet]. bioRxiv. medRxiv; 2021. Available from: http://medrxiv.org/lookup/doi/10.1101/2021.02.01.21250923


15. Ogata AF, Cheng C-A, Desjardins M, Senussi Y, Sherman AC, Powell M, et al. Circulating SARS-CoV[1]2 Vaccine Antigen Detected in the Plasma of mRNA-1273 Vaccine Recipients. Clin Infect Dis [Internet]. 2021 May 20; Available from: http://dx.doi.org/10.1093/cid/ciab465


16. Kuba K, Imai Y, Rao S, Gao H, Guo F, Guan B, et al. A crucial role of angiotensin converting enzyme 2 (ACE2) in SARS coronavirus-induced lung injury. Nat Med [Internet]. 2005 Aug;11(8):875–9. Available from: http://dx.doi.org/10.1038/nm1267


17. Chen I-Y, Chang SC, Wu H-Y, Yu T-C, Wei W-C, Lin S, et al. Upregulation of the chemokine (C-C motif) ligand 2 via a severe acute respiratory syndrome coronavirus spike-ACE2 signaling pathway. J Virol [Internet]. 2010 Aug;84(15):7703–12. Available from: http://dx.doi.org/10.1128/JVI.02560-09


18. Patra T, Meyer K, Geerling L, Isbell TS, Hoft DF, Brien J, et al. SARS-CoV-2 spike protein promotes IL- 6 trans-signaling by activation of angiotensin II receptor signaling in epithelial cells. PLoS Pathog [Internet]. 2020 Dec;16(12):e1009128. Available from: http://dx.doi.org/10.1371/journal.ppat.1009128


19. Zhang S, Liu Y, Wang X, Yang L, Li H, Wang Y, et al. SARS-CoV-2 binds platelet ACE2 to enhance thrombosis in COVID-19. J Hematol Oncol [Internet]. 2020 Sep 4;13(1):120. Available from: http://dx.doi.org/10.1186/s13045-020-00954-7


20. Suresh SJ, Suzuki YJ. SARS-CoV-2 Spike Protein and Lung Vascular Cells. Journal of Respiration [Internet]. 2020 Dec 31 [cited 2021 May 25];1(1):40–8. Available from:


21. Angeli F, Spanevello A, Reboldi G, Visca D, Verdecchia P. SARS-CoV-2 vaccines: Lights and shadows. Eur J Intern Med [Internet]. 2021 Apr 30; Available from:


22. Han M, Pandey D. ZMPSTE24 Regulates SARS-CoV-2 Spike Protein-enhanced Expression of Endothelial Plasminogen Activator Inhibitor-1. Am J Respir Cell Mol Biol [Internet]. 2021 May 18; Available from: http://dx.doi.org/10.1165/rcmb.2020-0544OC


23. Rhea EM, Logsdon AF, Hansen KM, Williams LM, Reed MJ, Baumann KK, et al. The S1 protein of SARS-CoV-2 crosses the blood-brain barrier in mice. Nat Neurosci [Internet]. 2021 Mar;24(3):368– 78. Available from: http://dx.doi.org/10.1038/s41593-020-00771-8


24. Idrees D, Kumar V. SARS-CoV-2 spike protein interactions with amyloidogenic proteins: Potential clues to neurodegeneration. Biochem Biophys Res Commun [Internet]. 2021 May 21;554:94–8. Available from: http://dx.doi.org/10.1016/j.bbrc.2021.03.100


25. Lei Y, Zhang J, Schiavon CR, He M, Chen L, Shen H, et al. SARS-CoV-2 Spike Protein Impairs Endothelial Function via Downregulation of ACE 2. Circ Res [Internet]. 2021 Apr 30;128(9):1323–6. Available from: http://dx.doi.org/10.1161/CIRCRESAHA.121.318902


26. Zhang L, Richards A, Barrasa MI, Hughes SH, Young RA, Jaenisch R. Reverse-transcribed SARS-CoV[1]2 RNA can integrate into the genome of cultured human cells and can be expressed in patient[1]derived tissues. Proc Natl Acad Sci U S A [Internet]. 2021 May 25;118(21). Available from: http://dx.doi.org/10.1073/pnas.2105968118


27. Suzuki YJ, Nikolaienko SI, Dibrova VA, Dibrova YV, Vasylyk VM, Novikov MY, et al. SARS-CoV-2 spike protein-mediated cell signaling in lung vascular cells. Vascul Pharmacol [Internet]. 2021 Apr;137:106823. Available from: http://dx.doi.org/10.1016/j.vph.2020.106823


28. Suzuki YJ, Gychka SG. SARS-CoV-2 Spike Protein Elicits Cell Signaling in Human Host Cells: Implications for Possible Consequences of COVID-19 Vaccines. Vaccines (Basel) [Internet]. 2021 Jan 11;9(1). Available from: http://dx.doi.org/10.3390/vaccines9010036


29. Ogata AF, Maley AM, Wu C, Gilboa T, Norman M, Lazarovits R, et al. Ultra-sensitive Serial Profiling of SARS-CoV-2 Antigens and Antibodies in Plasma to Understand Disease Progression in COVID-19 Patients with Severe Disease. Clin Chem [Internet]. 2020 Sep 8; Available from: http://dx.doi.org/10.1093/clinchem/hvaa213


30. Kloc M, Uosef A, Kubiak JZ, Ghobrial RM. Exaptation of Retroviral Syncytin for Development of Syncytialized Placenta, Its Limited Homology to the SARS-CoV-2 Spike Protein and Arguments against Disturbing Narrative in the Context of COVID-19 Vaccination. Biology [Internet]. 2021 Mar


31. Khan I, Hatiboglu MA. Can COVID-19 induce glioma tumorogenesis through binding cell

receptors? Med Hypotheses [Internet]. 2020 Nov;144:110009. Available from:


32. Singh N, Bharara Singh A. S2 subunit of SARS-nCoV-2 interacts with tumor suppressor protein

p53 and BRCA: an in silico study. Transl Oncol [Internet]. 2020 Oct;13(10):100814. Available from: http://dx.doi.org/10.1016/j.tranon.2020.100814


33. Madla CM, Gavins FKH, Merchant H, Orlu M, Murdan S, Basit AW. Let’s Talk About Sex: Differences

in Drug Therapy in Males and Females. Adv Drug Deliv Rev [Internet]. 2021 May 17; Available from: http://dx.doi.org/10.1016/j.addr.2021.05.014


34. European Medicines Agency. Assessment Report. Comirnaty (COVID-19 mRNA vaccine (nucleoside- modified)), EMA/707383/2020 Corr.1 [Internet]. 2021 Feb [cited 2021 Apr 13].


35. European Medicines Agency. Assessment Report. COVID-19 Vaccine Moderna (COVID-19 mRNA Vaccine (nucleoside-modified)), EMA/15689/2021 Corr.1 [Internet]. 2021 Mar [cited 2021 Apr 13]. Available from: https://www.ema.europa.eu/en/documents/assessment-report/covid19-vaccine-moderna-epar-public-assessment-report_en.pdf#page=47


36. European Medicines Agency. Assessment Report. COVID-19 Vaccine Janssen,

EMA/158424/2021 [Internet]. 2021 Mar [cited 2021 Apr 13]. Available from:


37. Pfizer. SARS-CoV- 2 mRNA Vaccine (BNT162, PF-07302048) 2.6.4 Yakubutsu dōtai shiken no gaiyō bun [summary of pharmacokinetic studies] [Internet]. 2021 [cited 2021 May 28]. Available from: https://www.pmda.go.jp/drugs/2021/P20210212001672212000_30300AMX00231_I100_1.pdf#page=16


38. CDC. Selected adverse events reported after COVID-19 vaccination [Internet]. 2021 [cited 2021 May 28]. Available from: https://www.cdc.gov/coronavirus/2019-ncov/vaccines/safety/adverse[1]events.html


39. Doshi P. FDA response to BMJ on reports of death after covid-19 vaccination [Internet]. 2021 [cited 2021 May 28]. Available from: https://www.bmj.com/content/372/bmj.n149/rr-25


40. Wyller TB, Kittang BR, Ranhoff AH, Harg P, Myrstad M. Nursing home deaths after COVID[1]19 vaccination. Tidsskr Nor Laegeforen [Internet]. 2021 May 20;141. Available from: http://dx.doi.org/10.4045/tidsskr.21.0383


41. Torjesen I. Covid-19: Pfizer-BioNTech vaccine is “likely” responsible for deaths of some elderly patients, Norwegian review finds. BMJ [Internet]. 2021 May 27 [cited 2021 May 28];373. Available from: https://www.bmj.com/content/373/bmj.n1372


42. Food and Drug Administration. Coronavirus (COVID-19) update: FDA Issues Policies to guide medical product developers addressing virus variants [Internet]. 2021 [cited 2021 May 28]. Available from: https://www.fda.gov/news-events/press-announcements/coronavirus-covid[1]19-update-fda-issues-policies-guide-medical-product-developers-addressing-virus


43. Owens C. Vaccine boosters could be necessary as soon as September [Internet]. Axios. 2021 [cited 2021 May 28]. Available from: https://www.axios.com/coronavirus-vaccinesboosters[1]pfizer- moderna-e8d6bed6-8238-4e52-9959-ca4c6a6e0d5a.html




44. Polack FP, Thomas SJ, Kitchin N, Absalon J, Gurtman A, Lockhart S, et al. Safety and Efficacy of

the BNT162b2 mRNA Covid-19 Vaccine. N Engl J Med [Internet]. 2020 Dec 31;383(27):2603–15.

32 views

Recent Posts

See All
bottom of page